
Vol.:(0123456789)

Annals of Biomedical Engineering 
https://doi.org/10.1007/s10439-024-03442-y

REVIEW

BIOMEDICAL
ENGINEERING 
SOCIETY

Cardiorespiratory Sensors and Their Implications for Out‑of‑Hospital 
Cardiac Arrest Detection: A Systematic Review

Saud Lingawi1,2,3   · Jacob Hutton1,4,5,6   · Mahsa Khalili1,3,5,6   · Babak Shadgan1,2,7,8 · Jim Christenson1,4,5,6 · 
Brian Grunau1,4,5,6 · Calvin Kuo1,2,3

Received: 20 October 2023 / Accepted: 3 January 2024 
© The Author(s) under exclusive licence to Biomedical Engineering Society 2024

Abstract
Out-of-hospital cardiac arrest (OHCA) is a major health problem, with a poor survival rate of 2–11%. For the roughly 75% 
of OHCAs that are unwitnessed, survival is approximately 2–4.4%, as there are no bystanders present to provide life-saving 
interventions and alert Emergency Medical Services. Sensor technologies may reduce the number of unwitnessed OHCAs 
through automated detection of OHCA-associated physiological changes. However, no technologies are widely available 
for OHCA detection. This review identifies research and commercial technologies developed for cardiopulmonary monitor-
ing that may be best suited for use in the context of OHCA, and provides recommendations for technology development, 
testing, and implementation. We conducted a systematic review of published studies along with a search of grey literature 
to identify technologies that were able to provide cardiopulmonary monitoring, and could be used to detect OHCA. We 
searched MEDLINE, EMBASE, Web of Science, and Engineering Village using MeSH keywords. Following inclusion, we 
summarized trends and findings from included studies. Our searches retrieved 6945 unique publications between January, 
1950 and May, 2023. 90 studies met the inclusion criteria. In addition, our grey literature search identified 26 commercial 
technologies. Among included technologies, 52% utilized electrocardiography (ECG) and 40% utilized photoplethysmog-
raphy (PPG) sensors. Most wearable devices were multi-modal (59%), utilizing more than one sensor simultaneously. Most 
included devices were wearable technologies (84%), with chest patches (22%), wrist-worn devices (18%), and garments 
(14%) being the most prevalent. ECG and PPG sensors are heavily utilized in devices for cardiopulmonary monitoring that 
could be adapted to OHCA detection. Developers seeking to rapidly develop methods for OHCA detection should focus on 
using ECG- and/or PPG-based multimodal systems as these are most prevalent in existing devices. However, novel sensor 
technology development could overcome limitations in existing sensors and could serve as potential additions to or replace-
ments for ECG- and PPG-based devices.
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Introduction

Out-of-hospital cardiac arrest (OHCA) is a major health 
issue, with a global average incidence of about 111 adults 
per 100,000 person-years (~ 40 million) [1]. OHCA affects 
approximately 350,000 individuals in Canada and the 
United States per year [1–3]. Survival from an OHCA is 
highly dependent on bystander recognition to provide life-
saving intervention or alert emergency medical services 
(EMS). Rapid initiation of cardiopulmonary resuscitation 
(CPR) is critical, with the likelihood of survival decreas-
ing by 13% with each 1-minute delay [4, 5]. A majority 
(75%) of OHCAs are unwitnessed, which can slow down 
or prevent the timely initiation of life-saving interventions 
and activation of EMS. Approximately 50% of unwit-
nessed OHCAs are not treated at all due to delays in the 
activation of the chain of care, resulting in a determination 
of futility death when EMS arrives [5, 6]. While rates of 
survival from witnessed OHCAs are estimated to be 11%, 
rates of survival from unwitnessed OHCAs are estimated 
to be much lower (2–4.4%) [7].

A sudden cardiac arrest results in an abrupt termina-
tion of blood circulation in the body that is accompanied 
and followed by various physiological changes. Cardiac 
rhythm variations are the most commonly observed physi-
ological changes during/after a cardiac arrest event. For 
instance, among EMS-treated OHCA patients in residen-
tial areas, 7–38% were found in shockable rhythms (e.g., 
ventricular fibrillation [VF]), with the remainder in non-
shockable cardiac rhythms (e.g., pulseless electrical activ-
ity [PEA], asystole) [8]. Similarly, data from in-hospital 
arrests revealed that 23% of the patients were found in 
shockable rhythms (e.g., VF), while the remainder had 
non-shockable rhythms (32% PEA; 35% asystole) [9]. 
Other physiological changes followed by a cardiac arrest 
event observed in hospital settings include the absence 
of heart rate (HR) [10, 11], respiratory rate [11], sys-
tolic blood pressure [11], and a drop in arterial oxygen 
saturation (SpO2) [12] and body temperature [13]. While 
heart rhythm, HR, and respiratory changes typically occur 
immediately following the onset of a cardiac arrest event 
(or even prior to the event), some downstream physiologi-
cal changes may not be immediately detectable and rather 
manifest later in response to the primary changes in car-
diopulmonary function. Monitoring and characterizing 
these immediate and downstream parameters are pivotal 
to OHCA detection.

Various sensor technologies are available for the moni-
toring of cardiopulmonary physiological parameters. 
These sensor technologies include (1) electrocardiography 
(ECG) sensors commonly used for HR [14], heart rhythm 
[14], and heart rate variability (HRV) monitoring [15]; (2) 

photoplethysmography (PPG) sensors commonly used for 
HR, heart rhythm, HRV, SpO2, and respiration monitor-
ing [16]; (3) near-infrared spectroscopy (NIRS) sensors 
commonly used for HR [17], respiratory function [18] and 
tissue oxygenation monitoring [19]; (4) inertial measure-
ment units (IMUs) and accelerometers commonly used for 
motion tracking [20], HR, and respiratory monitoring [21]; 
and (5) thermistors/thermometers commonly used for skin 
temperature monitoring [22]. The application of these sen-
sor technologies into the delivery of health services has 
been discussed in a diverse range of applications from 
use in clinical trials to provision of home monitoring for 
chronic disease management [23, 24].

Consumer devices that leverage these sensor technologies 
to provide physiological monitoring (e.g., smart watches) 
have seen considerable commercial success in worldwide 
consumer markets. A recent estimate suggests that there are 
roughly 440 million wearable devices in North America, 
and just over 1 billion worldwide [25, 26]. However, the 
majority of these commercial devices are designed solely for 
monitoring healthy individuals, with only a handful FDA-
approved to assess conditions such as Atrial Fibrillation. 
While commercial systems contain sensors that monitor 
relevant cardiopulmonary parameters, there remains a gap 
and opportunity in utilizing these devices for OHCA moni-
toring specifically. A recent review found that, indeed, there 
currently are no commercially available devices specific to 
OHCA detection [27]. Thus, the purpose of this systematic 
review is to assess the landscape of commercial and research 
health monitoring devices that have sensors that are relevant 
to OHCA, and to comment on their potential for adaptation 
to detect OHCA. Specifically, we wanted to identify why 
there are no OHCA detection devices despite the availability 
of sensors that could potentially detect physiological signals 
associated with OHCA, and identify what challenges need 
to be overcome to achieve broad OHCA detection capabili-
ties in wearable systems. This information can be used to 
focus efforts in the development of novel OHCA detection 
technologies.

Methods

Design and Search Strategy

This review was reported according to the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses Proto-
cols (PRISMA) checklist. We conducted a literature review 
of MEDLINE, EMBASE, Web of Science, and Engineering 
Village for studies that highlighted sensor technologies in 
cardiopulmonary monitoring. The keywords used were Med-
ical Subject Headings (MeSH) related to device categories 
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(e.g., wearable, implantable, non-contact), cardiopulmo-
nary conditions (e.g., cardiac arrest, cardiac arrhythmia), 
and associated parameters (e.g., heart rhythm, respiration 
rate). For the purposes of this review, HR, heart rhythm, and 
respiration were defined as the “primary parameters” (direct 
measures of cardiopulmonary function), with the remaining 
physiological parameters (e.g., blood pressure, skin tempera-
ture, body movement) considered as “secondary parameters” 
(consequences of changes in cardiopulmonary function). 
These MeSH were combined using AND and OR logistic 
operators. The full search strategies and list of MeSH for 
all included databases can be found in the Appendix. Addi-
tionally, reference lists of articles examined were scoped for 
additional papers meeting the inclusion criteria.

The gray literature search was conducted in addition to 
the database searches and focused on FDA-approved com-
mercial devices used for cardiopulmonary monitoring. We 
searched company websites, press release articles, and blogs 
on the Google search engine. For this search, the terms “car-
diac” and “respiratory” were combined with the OR logis-
tic operator, which were further combined with the terms 
“device” and “monitoring” with the AND logistic opera-
tor. Once commercial devices were included, a literature 
search of validation studies of each device was conducted. 
The Google Scholar engine was searched by combining 
each commercial device name with the search terms “heart 
rate” and “respiration” using the AND logistic operator. 
Any papers that had been identified as potentially relevant 
to commercial devices during the initial search for research 
prototypes were also included at this stage.

Inclusion Criteria

Two searches were conducted for this review; a systematic 
search of published literature on research prototypes and 
a gray search of commercialized devices. For the system-
atic search of research prototypes, we included studies that 
(1)  were conducted with mammalian participants, with no 
limits on participant age or morbidity; (2)  highlighted sen-
sor technologies in primary and/or secondary parameter 
monitoring, and described its method of operation; (3)  had 
feasible utility in the everyday, out-of-hospital setting; and  
(4) described a sensor with monitoring that is continuous in 
nature and did not require user-initiated measurement. We 
excluded review articles, articles that described purely algo-
rithmic development, articles lacking information relevant 
to device design, comparative studies, studies that detailed 
devices that monitored parameters that were not associ-
ated with primary function, devices that were not capable 
of real-time, continuous monitoring, as well as studies that 
described a commercial, consumer-grade sensor, as these 
papers were included later in the gray literature review for 
commercial devices. Full-text case reports, clinical trials, 

and technical reports describing cardiopulmonary sensors 
from January 1, 1950 to May 19, 2023 were eligible. Cita-
tions describing the monitoring of secondary parameters 
only (e.g., body movement) were excluded unless the moni-
toring was contextualized as cardiopulmonary in nature. 
Although implantable devices were included, implantable 
cardiac monitors and defibrillators (ICM & ICD) were not. 
While ICMs and ICDs are widely used for monitoring and 
treating aberrant cardiac activity, they are specifically uti-
lized in clinical populations with a known high risk of car-
diac arrest. Seeing as our primary objective was to assess the 
sensor technology landscape for devices that could be used 
in the everyday, out-of-hospital setting by anyone, includ-
ing low risk individuals, we did not include these devices 
in this review.

Study Selection

All identified citations were loaded into the online Covi-
dence systematic review management system [28], and 
duplicates were removed. Subsequently, title and abstract 
screening was conducted by two independent reviewers (JH, 
MK, or SL) for assessment against the inclusion criteria, fol-
lowed by a full-text screening of passed abstracts. For title 
and abstract screening, as well as full-text screening, any 
paper with two inclusion votes was passed to the next phase 
of the review. At any point in the review process, disagree-
ments were resolved through consensus in reference to the 
inclusion/exclusion criteria.

Data Extraction

Data were extracted from the appraised studies by two inde-
pendent reviewers (JH, MK, or SL) using a pre-specified 
internally developed data extraction framework. Extracted 
data included information about the sensor technology and 
design (e.g., sensing modality, form factor), detectable 
physiological parameters (e.g., HR, heart rhythm, respiration 
rate), study population, experimental/study settings (e.g., lab 
vs. clinical), and context of use. Any disagreements were 
resolved through discussion in reference to the pre-specified 
extraction tool.

The objective of the review was focused on providing an 
assessment of the technology landscape in cardiopulmonary 
monitoring and not comparative in nature. In addition, the 
extracted data of interest was primarily qualitative in nature, 
with no reported measures of outcomes, sensor accuracies, 
or viability of interventions that are subjected to reporter or 
methodological bias. As such, a risk of bias assessment was 
not conducted.
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Results

Research Prototypes

Our search strategy returned 6945 unique publications, 90 
of which met the inclusion criteria and were included in this 
review. The results of the screening process are detailed in 
Fig. 1.

Table 1 describes the 90 research prototypes identified in 
our review, including details of sensor types, sensor modali-
ties, physiological parameters, and form factors.

Physiological Parameters and Sensor Types

Many systems, including single-/multi-modal devices, were 
capable of monitoring multiple parameters. The 90 proto-
types reported a total of 207 measured physiological param-
eters (Fig. 2, left). Of all measured parameters, HR rate was 
most prevalent (N = 66), followed by respiration (N = 28), 
and heart rhythm (N = 25). Other secondary parameters 
included temperature (N = 21), blood pressure (N = 17), 
body movement (N = 17), and blood oxygenation (N = 14). 
ECG, PPG, IMU/Accelerometer, and temperature sensors 
accounted for the majority of sensor modalities used in the 
research prototypes (Fig. 2, right).

ECG, in particular, was prominent because of its impor-
tance in monitoring HR (accounted for 50.0%) and heart 
rhythm (92.0%) (Fig. 3a and b), while PPG was the second-
most used modality for the primary HR parameter (28.8%) 
(Fig. 3a). Aside from the primary cardiac parameters, ECG 
and PPG were also used to monitor secondary parameters 
such as respiration (7.1% and 3.6%, respectively, Fig. 3c) and 
blood pressure (21.4% together, 28.6% PPG, Fig. 3d). How-
ever, secondary parameters were often captured using other 
sensing modalities such as the IMU/accelerometer (17.9% 
respiration, 14.3% blood pressure) and FBG (Fig. 3c, d).

Device Type and Form Factor

For research prototypes, the sensing modalities were inte-
grated into a variety of form factors broadly categorized as 
wearable (81.1%), non-contact (11.1%), and implantable 
(7.8%). Certain form factors tended to use different sensing 
modalities (42.9% of implantable designs had an IMU/accel-
erometer and 50.0% of non-contact systems had a camera), 
but the wearable form factor was mostly represented by the 
ECG and PPG sensing modalities, predominantly used for 
primary parameter monitoring (Fig. 3a, b). Within wearable 
devices, various form factors were used, with chest patches 
(20.8%), garments1 (18.1%), and wrist-worn devices (15.3%) 
being the most prevalent designs. Several wearables either 

Fig. 1   PRISMA diagram for 
study selection for review

1  Sensors integrated into clothing
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Table 1   Summary of research prototype device types, sensor modalities, form factors, and context of use extracted from reviewed publications

Device type Sensor (parameter) Form factor and context of use

Wearable ECGa (HRb, HRVc); PPGd (HR); IMUe (Respiration); 
GSRf; Temperature sensor

A garment for physiological monitoring [29]

ECG (HR), PPG (Blood oxygenation), Accelerometer 
(Body movement), Temperature sensor

A wrist-worn device for physiological monitoring of high-risk cardio-
pulmonary patients [30]

ECG (HR, Heart rhythm), PPG (HR, Blood oxygenation), 
Accelerometer (Body movement), Temperature sensor

A multi-site body worn system for physiological monitoring for space 
and terrestrial applications [31]

ECG (HR), PPG (HR), Accelerometer (Body movement), 
BCGg (HR)

An ear worn device for physiological (cardiovascular) monitoring [32, 
33]

ECG (HR); PPG (Blood oxygenation); Temperature 
sensor

A multi-site body worn system for remote patient monitoring [34]

ECG (HR, Respiration), PPG (Blood pressure, Blood 
oxygenation), Temperature sensor

A multi-site body worn system for physiological monitoring [35]

ECG (Heart rhythm), PPG (Blood oxygenation), Tem-
perature sensor

A garment for physiological monitoring [36]

ECG (HR, Heart rhythm, Blood pressure); PPG (Blood 
pressure)

A multi-site body worn system for arrhythmia detection [37]

ECG (Heart rhythm), PPG (Blood pressure, Blood 
oxygenation)

A multi-site body worn system for continuous monitoring of cardiovas-
cular patients [38]

ECG (HR, Blood pressure [with PPG]), PPG (HR, Blood 
oxygenation, Blood pressure [with ECG])

A wrist-worn device for physiological monitoring [39]

ECG (HR), PPG (HR) An ear worn device for physiological monitoring [40]
ECG & PPG (Blood pressure) A multi-site body worn system for blood pressure monitoring of first 

responders [41]
ECG (HR); IMU (Body movement); GSR; Temperature 

sensor
A wrist-worn device for physiological monitoring [42]

ECG (HR), IMU (Respiration, Body movement), Tem-
perature sensor

A chest strap system for sudden infant death syndrome monitoring [43]

Wearable ECG (Heart rhythm), Accelerometer (Body movement), 
Temperature sensor

A textile-based garment for activity and cardiac monitoring [44]

ECG (HR, Heart rhythm); Accelerometer (Body move-
ment); Piezoresistive sensor (Respiration)

A textile-based garment for physiological monitoring [45]

ECG (HR), Accelerometer (Body movement), Tempera-
ture sensor

An abdominal (strap) device for physiological monitoring [46]
A garment (bra) for physiological monitoring [47]

ECG (HR, Heart rhythm, HRV, Respiration); Accelerom-
eter (Body posture)

A chest patch for cardiopulmonary monitoring [48]

ECG (HR, Heart rhythm), Accelerometer (Body movement) A garment for physiological monitoring [49]

ECG (HR, Heart rhythm), Position sensor (Fall detec-
tion), Temperature sensor

A textile-based garment for physiological monitoring [50]

ECG (Heart rhythm), Bioimpedance sensor (Respiration), 
Temperature sensor

A multi-site body worn system for physiological monitoring [51]
A chest patch for physiological monitoring [52]

ECG (HR), BCG (HR) An ear worn device for heart rate monitoring [53]

ECG (HR, Pulse pressure), Piezoresistive sensor (HR, 
Pulse pressure)

A wrist-worn device for cardiac monitoring [54]

ECG (HR), Piezoelectric sensor (Respiration) A chest strap for cardiopulmonary monitoring [55]

ECG (HR, HRV), Temperature sensor A textile-based garment for physiological monitoring [56]

ECG (HR), Temperature sensor A chest patch for physiological monitoring [57]
A garment for physiological monitoring [58]

ECG (HR); GSR A chest strap for physiological monitoring [59]
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Table 1   (continued)

Device type Sensor (parameter) Form factor and context of use

ECG (HR, Heart rhythm) A chest patch for long-term cardiac monitoring [60]
A chest patch for long-term monitoring of cardiac patients [61]
A chest patch and abdominal strap for cardiac monitoring [62]
A chest vest for cardiac monitoring [63]
A chest patch for cardiac monitoring [64]
A garment for cardiac monitoring [65, 66]

ECG (Heart rhythm) A chest patch for cardiac monitoring [67]
A garment for cardiac monitoring [68]
A chest patch for cardiac event monitoring [69]
A chest patch for heart beat detection [70]

PPG (HR), Accelerometer (Body movement), Tempera-
ture sensor

A finger worn device for remote patient monitoring [71]

PPG (HR); Accelerometer (Body movement) An ear worn device for elderly physiological monitoring [72]
A headband for remote patient physiological monitoring [73]

Wearable PPG (Pulse Rate Variability), Accelerometer (Body 
movement)

A body worn system for physiological monitoring [74]

PPG (HR); GSR; Temperature sensor An ear and neck worn system for remote physiological monitoring of 
elderly cardiac patients [75]

PPG (HR, HRV, Blood oxygenation, Heart rhythm); GSR A ring for physiological monitoring [76]

PPG (HR), Force sensor (sensor-to-skin contact) A wrist-worn device for physiological monitoring and pulse detection 
[77]

PPG (HR), Temperature sensor A chest patch for remote patient physiological monitoring [78]

PPG (HR, Blood pressure) A chest strap for continuous blood pressure monitoring [79]

PPG (HR, Blood oxygenation) A finger worn device for physiological monitoring [80]
A hand worn device for physical activity monitoring [81]

PPG (HR; Respiration) A wrist-worn device for cardiopulmonary monitoring [82]

PPG (HR) An ear worn device for heart rate monitoring [83]
An ear worn device for driver’s physiological monitoring [84]

PPG (Blood oxygenation) A textile-based sleeve for physiological monitoring [85]

PPG (Blood pressure) A wrist-worn device for physiological monitoring [86]

NIRSh (HR) A hand worn device for physiological monitoring [87]

IMU (Respiration, Body movement) An abdominal strap for respiration monitoring [88]

IMU (Respiration) A chest strap for respiration monitoring [89]

Accelerometer (Respiration) A chest patch for respiration monitoring [90]

Accelerometer (Blood pressure) A chest patch device for blood pressure monitoring [91]

Force Sensitive Resistor (HR) A wrist-worn device for heart rate monitoring [92]

Acoustic sensor (HR, Heart rhythm) A wrist-worn device for cardiac monitoring [93]

Bioimpedance sensor (Respiration), IMU (Motion); 
Temperature sensor

A chest patch for respiration monitoring [94]

Bioimpedance sensor (Blood pressure, Respiration) A wrist-worn device for blood pressure monitoring [95]
A chest patch for respiration monitoring [96]

Fiber Bragg Grating (Blood pressure, Respiration) A textile-based multi-site body worn system for respiration monitoring 
[97, 98]

A wrist-worn device for pulse pressure monitoring [99]

Triboelectric sensor A waist strap for respiration monitoring [100]

Strain gauge sensor A chest/abdominal strap for respiration monitoring [101]
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allowed users to place the device at one of several eligi-
ble body sites or required application at more than one site 
(12.5%).

Wearable devices tended to incorporate multiple sensing 
modalities (multi-modal, 52.8%), compared to non-contact 
and implantable devices which were always single modal-
ity. ECG sensor modalities were most often embedded in 
form factors localized to the chest (garment, chest straps and 
patches) and PPG sensor modalities were most often embed-
ded in form factors localized to the extremities (fingers, ears, 
hand, wrist), with both ECG and PPG being paired with 
other sensing modalities incorporated into the common form 
factors, or embedded as a multi-site wearable device (Fig. 4).

Commercial Devices

A list of commercialized devices that met the inclusion cri-
teria is presented in Table 2. The breakdown of sensor types, 
physiological parameters, form factors, and context of use 

for these commercialized devices is presented in the remain-
der of this section.

Physiological Parameters and Sensor Types

Commercial devices tended to monitor multiple parameters, 
with 102 physiological parameters reported to be measured 
by the 26 included devices. HR (N = 26), heart rhythm (17), 
body movement (16), temperature (14), and respiration (13) 
were the most commonly measured. Within the 26 devices, 
ECG (17 of all 23 devices) were most prevalent, followed 
by IMU/accelerometer (15), temperature sensors (14), and 
PPG (10). Other examples of sensors in commercial devices 
included Impedance Pneumography (IPG), Galvanic Skin 
Response (GSR), and Acoustic sensors. The breakdown of 
sensor types and parameters for research prototypes is pre-
sented in Fig. 5. HR was most frequently measured by ECG 
and PPG (Fig. 6a). All commercial devices used ECG and 
PPG for heart rhythm measurements (Fig. 6b). Similar to 

Table 1   (continued)

Device type Sensor (parameter) Form factor and context of use

Implantable ECG (HR, Heart rhythm) A subcutaneous device for cardiac arrest monitoring [102]
PPG (Blood oxygenation) A subcutaneous sensor for arterial oxygen saturation monitoring [103, 104]
NIRS (Blood/Tissue oxygenation, Perfusion) An implantable device for spinal cord oxygenation monitoring [105]
Accelerometer (Cardiac motion) An implantable device to measure endocardial and epicardial accelera-

tion [106]
An implantable device to monitor cardiac contractions [107]

Accelerometer (Blood pressure) An implantable device for continuous blood pressure monitoring [108]
Non-contact RGB camera (HR, Respiration) A camera-based heart rate monitoring in the neonatal intensive care 

unit [109]
A camera-based breathing monitoring system [110]
A camera-based respiration monitoring system in infants [111]

Thermal camera (Respiration) A camera-based respiration rate monitoring [112]
Infrared camera (Respiration) A camera-based respiration monitoring in infants [113]
Acoustic monitor (Respiration) An acoustic-based apnea monitoring device in infants [114]
Acoustic radar (HR, Respiration) An acoustic-based cardiopulmonary monitoring device for wheelchair 

users [115]
Doppler radar (HR, HRV) A non-contact device for cardiac activity monitoring [116]
Laser Doppler (HR) A non-contact device for blood pulse waveform monitoring [117]
Load cell (HR, Respiration) A bed-based device for sleep monitoring [118]

a Electrocardiogram (ECG)
b Heart Rate (HR)
c Heart Rate Variability (HRV)
d Photoplethysmogram (PPG)
e Inertial Measurement Unit (IMU)
f Galvanic Skin Response (GSR): Measures the electrical conductance of the skin, which is often used as a measure of physiological/emotional 
arousal
g Ballistocardiogram (BCG): Measures the mechanical movements of the body as a result of the heart's contractions
h Near Infrared Spectroscopy (NIRS)
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what was observed in the included research prototypes, the 
majority (75%) of the included commercial devices were 
multi-modal, utilizing multiple sensors for cardiopulmo-
nary monitoring. All multi-modal commercial devices used 
at least one ECG or PPG (multi-modal with ECG: 33.3%; 
multi-modal with ECG and PPG: 29.2%; and multi-modal 
with PPG: 12.5%). Among single modality devices, ECG 
sensors had the highest prevalence (8.3%). 67 total sensors 
were used throughout the included 26 commercial devices. 
Within all sensors, ECGs (26.6%) were most prevalent, 

followed by IMU/accelerometers (23.4%), temperature sen-
sors (20.3%), and PPGs (14.1%).

Device Type and Form Factor

With the exception of 1 mattress-based device and 1 non-
contact sensor, all commercial devices were wearable 
devices. Similar trends were observed in research proto-
types, with wearable devices having the highest prevalence. 
Among wearables, chest patches (26.9%) and wrist-worn 

Fig. 2   Prevalence of parameters (left) and all sensors (right) in 90 research prototypes

Fig. 3   Breakdown of sensor 
types for a heart rate (N = 66); 
b heart rhythm (N = 25); c 
respiration (N = 28); and d 
blood pressure (N = 14) (BIS 
bioimpedance sensor, FBG 
Fiber Bragg Grating sensor). 
Note Parameters that are not 
shown here (e.g., temperature) 
did not have a variety of sensor 
modalities.
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devices (26.9%) were the most prevalent. Similarly, chest 
patches and wrist-worn devices were among the most 
prevalent form factors among research prototypes. Multi-
modal wearables generally utilized ECG and/or PPG with 
the following order: multi-modal with ECG (32.0%), 
multi-modal with ECG and PPG (28.0%), and multi-modal 
with PPG (12.0%) (Fig. 7). The majority of devices that 
integrated ECG sensors without PPGs were chest patches 
(70%). Devices that utilized PPG in a multimodal combi-
nation tended to be wristbands (Fig. 7). These form factor 
considerations and design characteristics are in line with 
extracted data from research prototypes.

Context of Use

The majority (72.0%) of the commercial devices (all FDA-
approved) were designed to be used for specific clinical 
applications (e.g., remote cardiopulmonary patient moni-
toring). The remainder of the commercial devices (28.0%) 
were used for fitness tracking or general health monitoring 
(e.g., Fitbit, Apple watch). However, in conjunction with 
appropriate software applications, these devices can provide 

diagnostic capabilities for some cardiac conditions (e.g., 
AFib detection). Most ECG-based patches were designed 
in the form of disposable devices with battery life and data 
storage capabilities of up to 14 days. However, wrist-worn 
devices used for fitness tracking are rechargeable and use 
cloud-based apps for data transfer and tracking.

Discussion

Summary

Cardiac arrest is a complex physiological state that is charac-
terized by a cascade of primary (proximate) and secondary 
(downstream) changes in vital signs. The majority of cardiac 
arrest cases in the out-of-hospital setting are unwitnessed, 
and thus have extremely low rates of survival due to a lack of 
timely response and treatment. Biosensors with continuous 
monitoring capabilities may be used to address unwitnessed 
cardiac arrests by identifying these physiological changes and 
alerting first responders. Although remote cardiopulmonary 
monitoring devices exist and are being used, there are very 

Fig. 4   Breakdown of wearable research prototypes based on sensor modality & form factor
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few that are specifically designed for OHCA detection. Thus, 
while there are currently millions of individuals worldwide 
who wear a wearable device that continuously monitors physi-
ological parameters that may be used to detect OHCA, there 
are currently few technologies that are specifically designed 

and validated for this purpose. Our review assesses the cur-
rent landscape of wearable technologies to better focus efforts 
on providing continuous OHCA detection capabilities. Spe-
cifically, this review was focused on technologies with capa-
bilities for continuous physiological monitoring of parameters 

Fig. 5   Prevalence of all parameters (left) and sensors (right) in 26 commercial devices.

Fig. 6   Breakdown of sensor types for commercial for a heart rate (N = 24); b heart rhythm (N = 17); c respiration (N = 11) (BCG ballistocardio-
gram, IPG impedance pneumography)

Fig. 7   Breakdown of all com-
mercial devices based on sensor 
modality and form factor.
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associated with changes in cardiopulmonary or associated 
parameters resulting from a sudden cardiac arrest event.

In our review, HR (30%) and heart rhythm (14%) were 
among the most commonly reported parameters across both 
research prototypes and commercial devices for clinical and 
remote patient monitoring applications. With the high global 
prevalence and awareness of cardiovascular disease (CVD) 
[146], and given that HR and heart rhythm are among the main 
risk predictors of CVDs, it is intuitive that remote cardiovascu-
lar monitoring devices should mainly focus on measuring these 
parameters. We found that many currently available wearable 
devices marketed for other purposes (e.g., fitness tracking, gen-
eral health monitoring) also have relevant sensing modalities 
that monitor these primary parameters. Thus, our review sug-
gests there is great opportunity for developing methodologies 
(e.g., algorithms) that utilize existing technologies monitoring 
HR and heart rhythm specifically for OHCA detection that can 
have a broad and global reach. However, adapting these sen-
sors to inform the design of devices for OHCA detection will 
require further sensor-specific and system-level considerations.

Adaptation of Current Cardiopulmonary Sensors 
for OHCA Detection

Sensor‑Specific Considerations for ECGs

ECG sensors are capable of highly accurate cardiac moni-
toring, which was reflected in their prevalence among both 
research prototypes and commercial devices. ECG-based 
systems were commonly used for HR and/or heart rhythm 
monitoring, which is consistent with previous studies inves-
tigating sensor technologies in cardiac monitoring applica-
tions [24, 147, 148]. Our review revealed that chest patches 
were the most common form factor incorporating ECGs 
among both research prototypes and commercial devices. 
Compared to Holter monitors (i.e., the current gold stand-
ard cardiac monitoring device in clinical settings), these 
ECG patches provide longer-term continuous monitor-
ing capacities (i.e., up to 2–3 weeks), while offering a less 
intrusive form factor. Compared to Holter monitors, chest 
patches were perceived to be more comfortable and had 
higher user adherence [60]. Wrist-worn and garment/tex-
tile ECG devices were other common form factors in multi-
modal ECG-based wearables. Wrist-worn ECGs can offer 
a more user-friendly alternative to ECG patches for long-
term (i.e., months/years) applications (e.g., no adhesives, 
no interference with clothing). Similarly, garment-based 
ECGs are other alternatives to patches, avoiding the need 
for adhesives.

Despite the capabilities of ECG-based devices, they 
are not practical for OHCA detection in their current form 

factors. For instance, chest patches may cause irritation 
when used long-term [147]. In addition, some patches have 
limited/no battery charging capacity, and they lack a user-
friendly interface [147, 149]. While wristband form factors 
dominate the consumer market [150], current wristband 
ECGs necessitate user interaction with the device to obtain 
a measurement (i.e., intermittent monitoring) [151]. Such 
user-initiation would not be possible in the event of a car-
diac arrest due to a lack of consciousness. Although ECG 
monitors with at least 2 leads are recommended for accu-
rate HR or heart rhythm monitoring, both patch-based and 
wristband ECGs are constrained to providing single-lead 
measurements [152]. Restricting an ECG system to single 
lead measurements may result in up to 10% increases in 
measurement error compared to clinical-grade ECGs with 
more than one lead [151]. In this review, only garments 
were observed to have sufficient points of body contact 
(i.e., more than two) to provide multiple lead continuous 
monitoring capabilities. Despite the benefits of enabling 
continuous ECG monitoring, the usability of such garment-
type devices for an extended period may be a challenge for 
many individuals, particularly as these garments require 
sustained close fit for accurate continuous measurement. 
Another limitation of ECG-based devices is the inability to 
detect the presence of PEA – (20% of EMS-treated cardiac 
arrest cases) [153]. PEA is characterized as a detectable 
cardiac electrical signal despite the absence of a palpable 
pulse (i.e., measurable electrical signals during a cardiac 
arrest).

For those seeking to design OHCA devices that utilize 
ECG sensors, consideration of how to incorporate multiple 
points of contact (i.e., multiple-lead measurements) in a 
form factor that is amenable to long-term continuous use 
is key. Devices should allow for the acquisition of heart 
rhythm measurements without requiring user interaction. If 
garment-style devices such as vests are designed, user com-
fort and considerations for optimal user adherence should 
be a priority. Additionally, as ECG-based devices can-
not detect PEA arrests, those seeking to design solutions 
for OHCA should consider the addition of other sensor 
types in a multi-modal design to complement ECG-based 
monitoring.

Sensor‑Specific Considerations for PPGs

PPGs, capable of monitoring a variety of physiologi-
cal parameters with high accuracy (e.g., HR, HRV, 
SpO2), had high prevalence in both research prototypes 
and commercial devices. Similar trends and capabili-
ties of PPGs in the context of cardiac monitoring were 
reported in previous studies [24, 148]. The comparison 
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of PPG-derived HR accuracy with ECG-derived HR in 
clinical settings demonstrated that PPG can produce 
accurate readings under controlled conditions (e.g., 
stationary and absence of motion) [154]. Unlike ECG-
based devices, PPGs do not require multiple points of 
contact for accurate monitoring [153]. In addition, PPGs 
can detect PEA by measuring the lack of volumetric 
differences in arterial blood due to the cardiac arrest, 
as opposed to the electrical activity of the heart. One 
of the major benefits of PPG-based devices is that they 
can be designed for and used in a variety of locations 
on the human body (e.g., wrist, finger, ear, chest, etc.), 
increasing their degree of customizability to be tailored 
for commercial use. In research and commercial devices, 
wristbands were the most common form factor incor-
porating PPGs, representing the second most common 
form factor overall after chest patches. Comparatively, 
wrist-based devices are deemed more user-friendly from 
a convenience and aesthetic value perspective, and have 
therefore penetrated the non-clinical commercial wear-
able device sector [150].

Although PPG-based HR and blood oxygenation 
monitoring has been widely accepted and used in clini-
cal settings, the use of PPG-based devices for HR and 
heart rhythm monitoring in out-of-hospital settings has 
limitations. Variable sensor-to-skin contact pressure and 
the choice of measurement site affect PPG signal quality 
and accuracy [155]. Measurement sites that tend to be less 
accurate (e.g., the wrist, compared to the fingertip) also 
tend to be the locations that users would prefer to wear the 
device [16]. Body movements at the sensor placement site 
could result in up to 30% measurement error [156]. Other 
limitations of PPG arise from its optical methods of detec-
tion. Most notably, user-specific characteristics such as 
skin pigmentation or body weight can cause measurement 
variations that affect the accuracy of PPG signals [157]. 
Overall, compared to ECG-based devices, PPG-based 
devices are expected to be more susceptible to deviation 
in the real-world setting [158].

For those seeking to design OHCA devices that utilize 
PPG sensors, it is key to secure and confirm adequate con-
tact with the skin at a body location more conducive to high-
quality signal acquisition, such as a ring at the base of the 
finger. In addition, the selected body location would require 
adequate tissue perfusion, as indicated by the perfusion 
index. Incorporating several LEDs would aid in the cross-
validation of PPG signals at a single site, while still only 
requiring a single point of contact. Incorporation of mul-
tiple PPG sensors in one form factor, or within form fac-
tors that ensure minimal sensor-skin movement, will also 
help address the vulnerability of PPGs to movement-based 

errors. Algorithmically, efforts should be undertaken to opti-
mize the signal-noise ratio through the filtering of motion 
artifacts. Targeted testing and validation on a range of skin 
pigmentations, body weights, and epidermal thicknesses 
(which may involve a wider range of PPG light wavelengths) 
will help address known limitations in accuracy for specific 
subgroups.

Considerations for Other Wearable Sensing Modalities

Limitations relevant to PPG and ECG (e.g., motion arti-
facts, form factors, continuous measurement, comfort, 
time delays) may also apply to other sensor modalities 
included in this review. However, due to the low number 
of studies describing such sensors specifically in cardio-
pulmonary applications, their advantages and limitations 
are largely speculative. Further development of such sen-
sors for cardiopulmonary applications is necessary to gain 
a comprehensive understanding of their major advantages 
and limitations in the potential role of monitoring for both 
OHCA detection and general cardiopulmonary health 
monitoring.

Considerations for Multi‑modal System Design

Given the limitations inherent to both ECG- and PPG-
based devices, as well as the benefits of being able to moni-
tor several different primary and secondary parameters, a 
multi-modal solution is likely the best approach for OHCA 
detection.

OHCA sensors require high accuracy, encompassing 
both sensitivity (i.e., the capability to detect a cardiac arrest 
when it occurs—minimizing false negatives) and specific-
ity (i.e., the capability not to produce an alert when the 
user is not in cardiac arrest—minimizing false positives). 
For every individual, the likelihood of a cardiac arrest is 
quite low. If one is to make the effort to wear a device for 
cardiac arrest detection, the user will likely need assur-
ances that it will successfully identify a cardiac arrest if it 
occurs. On the other hand, it would also be important to 
users and EMS providers that the device does not produce 
many faulty alarms, as that would be regarded as a nui-
sance to users and will risk burdening EMS. A multi-modal 
approach to cardiac arrest detection may assist in minimiz-
ing both false positives and false negatives, improving the 
system’s accuracy overall.

Incorporating multiple sensors can increase the ability of 
the device to detect cardiac arrest states, particularly through 
reducing noise artifacts and improving signal quality. An 
example of such is the utilization of IMUs in an ECG-
PPG-based solution to remove motion artifacts. Another 
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such example is using multiple PPG sensors on different 
body parts, or using high-density PPGs (i.e., PPGs with 
more than one emitter/detector) [16]. These same solutions 
work towards minimizing false negatives from a decision-
making perspective, relying on independent data streams 
to only produce OHCA alerts when there is a high level 
of agreement among different sensors above a pre-specified 
threshold. Examples of such include using both PPG and 
ECG for HR and heart rhythm monitoring, or incorporating 
IMUs for the detection of motionlessness. Although the use 
of several sensor modalities for long continuous periods may 
reduce battery life, software-level modifications can be made 
to turn specific sensors on/off as needed (e.g., triggering one 
sensor after a potential critical state is measured by another 
sensor) [147].

The utilization of a multi-modal approach for OHCA 
detection should consider a form factor congruent with long-
term use. While multiple points of contact are ideal for mon-
itoring with ECG, developers should target form factors that 
can incorporate these multiple sensors within one wearable 
device instead of requiring users to wear multiple devices 
as part of an integrated system. Such designs will likely lead 
to higher user comfort and translate to easier adoption for 
long-term monitoring.

Novel Biosensing Technologies

While multimodal sensing can help bypass some of the 
issues generated from relying on a single sensor modal-
ity, another solution may be given by the development of 
novel sensor technologies. Our review revealed that there 
are several upcoming technologies in this category, includ-
ing textile-based bioimpedance sensors [159], camera-based 
non-contact sensors [160], and NIRS [161, 162]. However, 
many of these systems suffer similar issues as ECG and PPG 
sensors. Textile-based bioimpedance sensors would require 
adequate continuous physical contact with the user to per-
form measurements (analogous to garment-based ECGs), 
camera-based non-contact sensors would necessitate multi-
ple-camera installation to capture continuous measurements 
(analogous to single-lead ECGs), and NIRS, being an optical 
based modality, faces similar challenges as PPGs. A novel 
sensor designed specifically to address OHCA-specific 
challenges, perhaps one operating on new principles or one 
adapted for cardiopulmonary monitoring from other existing 
fields (e.g., non-invasive, continuous biomarker monitoring), 
could be a strong solution on its own or in a multimodal 
system.

Considerations Related to Device Type

The similarities between wrist-worn wearable devices and 
conventional watches or wrist-worn accessories increases 
the acceptability of such devices among users [163]. How-
ever, wrist-worn devices are prone to various artifacts, such 
as motion or variable sensor-to-skin pressure, which greatly 
affect measurement quality. While non-contact physiological 
monitoring devices provide unobtrusive monitoring capa-
bilities, they may impose other challenges, such as a limited 
range and field of view (e.g., camera-based devices) and 
scalability issues (e.g., installment in multiple locations, 
cost). Despite these limitations, a niche may still exist for 
their use as the majority of OHCA cases occur in the home 
[6, 153]. Implantable solutions provide limited use cases 
and are typically only offered to high-risk individuals. The 
expected benefit of using an implantable device lies in its 
independence from user-based maintenance (e.g., recharg-
ing, ensuring proper attachment, etc.). However, implantable 
devices may raise other concerns such as risk of infection, 
replacement issues, and cost [147].

Validation

Although the accuracy of several ECG- and PPG-based 
devices has been validated previously, the context of use was 
mainly limited to monitoring healthy or non-immediately 
life-threatening cardiac states (e.g. AFib) [147]. Many of 
the reviewed devices described in this paper have a strong 
foundation of clinical evidence surrounding detection accu-
racy for physiological monitoring under their conditions 
of intended use (e.g., Apple Watch and FitBit for AFib) 
[164, 165]. However, extrapolating this evidence to OHCA 
is a challenge. For example, a device with high accuracy 
to detect HR within a normal physiological range does not 
necessarily retain its accuracy for detecting the absence of 
a pulse. Indeed, there was a recent reported case study of 
a FitBit observing an OHCA, where the device continued 
reported a heartbeat following the OHCA [166]. Thus, tech-
nologies for OHCA detection require testing and validation 
on this specific physiological state.

Laboratory testing is a necessary first step in determin-
ing the accuracy of cardiac arrest detection as compared 
to a gold standard. For devices worn on the extremities 
that detect HR, standard occlusion tests may provide some 
indication of device performance (i.e., cardiac arrest detec-
tion accuracy) [167]. However, for devices that are worn 
proximally or on multiple sites, simulating a cardiac arrest 
with occlusion may not be feasible. For these devices, test-
ing using animal models or during medical procedures that 
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involve inducing cardiac arrest (cardiac surgery, medical 
assistance in dying) may provide the best estimate of the 
device performance [168]. In addition, devices developed 
for OHCA detection should incorporate real-world testing 
as laboratory testing does fall short of approximating the 
real-world conditions within which these devices will oper-
ate [169]. Ultimately, OHCA sensors will require clinical 
validation in settings that approximate or mirror the intended 
conditions of use. Data storage, cloud-based data transmis-
sion and processing, and user privacy are among other 
important features of OHCA detection systems for future 
exploration [158].

Limitations

We limited the review to include devices that could be 
adapted to out-of-hospital use for cardiac arrest detection, 
which required a degree of subjective assessment. Devices 
that utilized form factors deemed to be non-compatible 
with long-term, everyday use were excluded from the 
review (e.g., Holter monitor). Additionally, sensors that 
appeared in our searches as relevant to OHCA detection 
were based on the inclusion of our determined list of pri-
mary and secondary parameters. However, there may be 
physiological parameters (and associated sensors capable 
of detecting such parameters) that were not included in this 
review that may be potentially relevant to OHCA detec-
tion (e.g., biomarkers known to be associated with cardiac 
arrest).

In the search of commercial devices, we were restricted 
to devices that are already established and publicly available 
(FDA-approved). However, some private commercial tech-
nologies are still in development, and information on poten-
tial utility for OHCA detection is not yet publicly available.

Conclusion

This review revealed that ECG and PPG sensors are heav-
ily utilized in devices for cardiopulmonary monitoring that 
could be adapted to OHCA detection, but there are several 
limitations that need to be addressed first. While ECG is a 
common and familiar sensor type in cardiac monitoring, 
existing ECG-based devices have a suboptimal use case or 
form factor for OHCA detection. PPG-based devices offer 

convenient and continuous monitoring solutions; however, 
ensuring the maintenance of continuous, high-quality and 
reliable measurements is a critical consideration relevant 
to OHCA detection. At the current state of FDA-approved 
commercial technologies, developers seeking to quickly 
develop methods taking advantage of existing devices 
should focus on ECG- and PPG-based multimodal sys-
tems. However, there is a potential for novel biosensors 
(e.g., bioimpedance textiles, NIRS) to address current 
sensor limitations. Here, we recommend that novel sen-
sors should be designed with a focus on detecting OHCA 
rather than general cardiopulmonary measures. Although 
other sensor types (e.g., IMU) did not appear promising 
on their own for use in cardiac arrest detection, they may 
be valuable components of a multi-modal approach that 
could be ECG- and/or PPG-based. Similarly, the addition 
of sensor modalities to detect the presence and/or absence 
of primary or secondary parameters (e.g., GSR), may lead 
to higher specificity. In addition, consideration of end-user 
input on form factor and usability is essential, as factors 
related to comfort and usability will be major determi-
nants of the long-term and continuous device use nec-
essary to ensure optimal protection against unwitnessed 
OHCA. Physiological and contextual differences limit 
the translation of the robust clinical testing and validation 
performed for many cardiopulmonary devices to OHCA. 
Specific testing and validation on patients in cardiac arrest 
is needed.

Appendix: Search Terms and Search Strategy

The search strategy is provided below. The search data-
bases include MEDLINE, EMBASE, Web of Science, and 
Engineering Village. The search was restricted to articles 
in English within the date range of January 1, 1950 to May 
19, 2023. Full-text case reports, clinical trials, and technical 
reports were included in the search.

Search Terms

The terms used in this search fell under four classify-
ing categories: (1)  terms for continuous monitoring and 
detection of physiological parameters, (2)  terms for broad 
categories of sensors, (3)  terms for the primary disease 
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states associated with cardiac arrest, and (4)  terms for 
cardiac arrest-associated physiological parameters. The 
exact search terms within each classifying category are 
listed below (Table 3).

When necessary, keywords were shortened and trun-
cated with an asterisk (e.g. detect*) to retrieve unlimited 
suffix variations (e.g. detect, detecting, detectable, etc.). 
The search terms were combined according to the follow-
ing strategy:

MEDLINE Example Search

On MEDLINE, all of the search terms used, with the 
exception of “prevent”, “detect”, “monitor”, “cardiac 
arrest”, and “implant” were Medical Subject Headings 
(MeSH). Broader MeSH were selected to encompass 

Category1AND
[

(Category2)AND(Category3ORcategory4)
]

Table 3   Literature search terms
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relevant subcategories when necessary. Below is a more 
detailed representation of this search strategy (Table 4).
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